Author Affiliations
Abstract
1 Shanghai Jiao Tong University, Department of Electronic Engineering, State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai, China
2 Nokia Bell Labs, Murray Hill, New Jersey, United States
3 Shanghai University, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai, China
4 Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, John Hopcroft Center for Computer Science, Shanghai, China
Mode-division multiplexing (MDM) technology enables high-bandwidth data transmission using orthogonal waveguide modes to construct parallel data streams. However, few demonstrations have been realized for generating and supporting high-order modes, mainly due to the intrinsic large material group-velocity dispersion (GVD), which make it challenging to selectively couple different-order spatial modes. We show the feasibility of on-chip GVD engineering by introducing a gradient-index metamaterial structure, which enables a robust and fully scalable MDM process. We demonstrate a record-high-order MDM device that supports TE0–TE15 modes simultaneously. 40-GBaud 16-ary quadrature amplitude modulation signals encoded on 16 mode channels contribute to a 2.162 Tbit / s net data rate, which is the highest data rate ever reported for an on-chip single-wavelength transmission. Our method can effectively expand the number of channels provided by MDM technology and promote the emerging research fields with great demand for parallelism, such as high-capacity optical interconnects, high-dimensional quantum communications, and large-scale neural networks.
integrated photonics metamaterial mode-division multiplexing subwavelength grating 
Advanced Photonics
2023, 5(5): 056008
Author Affiliations
Abstract
1 Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
2 Nokia Bell Labs, Holmdel, New Jersey 07733, USA
3 CREOL, University of Central Florida, Orlando, Florida 32816, USA
4 Institute for Photonic Integration, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
We propose to use the low-coherence property of amplified spontaneous emission (ASE) noise to mitigate optical crosstalk, such as spatial, polarization, and modal crosstalk, which currently limits the density of photonic integration and fibers for dense space-division multiplexing. High optical crosstalk tolerance can be achieved by ASE-based low-coherence matched detection, which avoids dedicated optical lasers and uses spectrally filtered ASE noise as the signal carrier and as a matched local oscillator. We experimentally demonstrate spatial and modal crosstalk reduction in multimode fiber (MMF) and realize mode- and wavelength-multiplexed transmission over 1.5-km MMF supporting three spatial modes using a single ASE source. Performance degradation due to model dispersion over MMF is experimentally investigated.
Photonics Research
2019, 7(11): 11001363
作者单位
摘要
Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072, China
networks optical communications radioover-fiber (RoF) system optical frequency multiplication (OFM) Mach-Zehnder modulator (MZM) self-heterodyne stimulated Brillouin scattering (SBS) free spectrum range (FSR) millimeter wave (mm-wave) 
Frontiers of Optoelectronics
2009, 2(4): 368

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!